The Application of Wavelets Transforms and Neural Networks to Speech Classification
نویسنده
چکیده
This paper proposes a hybrid wavelet-neural network approach to classify speech for multifunctional control applications. The classification of the consonants (b,d,g) is the focus of this work. MultiResolution Wavelet Analysis (MRWA) was used to extract utterance features while a modular Artificial Neural Network (ANN) was used for classification. The performance of the proposed method was compared to that of the cepstrum method. The results show that MRWA are superior to the cepstrum in at least two points: higher recognition rate and consistent output demonstrating higher reliability.
منابع مشابه
Application of Artificial Neural Networks in a Two-step Classification for Acute Lymphocytic Leukemia Diagnosis by Blood Lamella Images
Introduction: This study aimed to present a system based on intelligent models that can enhance the accuracy of diagnostic systems for acute leukemia. The three parts including preprocessing, feature extraction, and classification network are considered as associated series of actions. Therefore, any dysfunction or poor accuracy in each part might lead in general dysfunction of...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملIntelligent Voice Recognition System Based on Acoustic and Speaking Fundamental Frequency Characteristics
Speech recognition is a fascinating application of Digital Signal Processing and has many real-world applications. In this paper, a speech recognition system is developed for isolated spoken words using Discrete Wavelet Transforms (DWT) and Artificial Neural Networks (ANN). Speech signals are one-dimensional and are random in nature. This paper investigates Automatic Speech Recognition of gende...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملRegion Classification Based Image Denoising Using Shearlet and Wavelet Transforms
This paper proposes a neural network based region classification technique that classifies regions in an image into two classes: textures and homogenous regions. The classification is based on training a neural network with statistical parameters belonging to the regions of interest. An application of this classification method is applied in image denoising by applying different transforms to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Intelligent Automation & Soft Computing
دوره 9 شماره
صفحات -
تاریخ انتشار 2003